
Stochastic Estimation of Human Shoulder Impedance 
with Robots: An Experimental Design 

 

Kyungbin Park and Pyung Hun Chang 
Department of Mechanical Engineering 

KAIST 
Daejeon, Korea 

pkbin98@kaist.ac.kr, phchang@kaist.ac.kr
 
 

Abstract— Previous studies assumed the shoulder as a hinge joint 
during human arm impedance measurement. This is obviously a 
vast simplification since the shoulder is a complex of several 
joints with multiple degrees of freedom. In the present work, a 
practical methodology for more general and realistic estimation 
of human shoulder impedance is proposed and validated with a 
spring array. It includes a gravity compensation scheme, which is 
developed and used for the experiments with a spatial three 
degrees of freedom PUMA-type robot. The experimental results 
were accurate and reliable, and thus it has shown a strong 
potential of the proposed methodology in the estimation of 
human shoulder impedance. 

Keywords- stochastic estimation; shoulder; impedance 
measurement;  gravity compensation; impedance control 

I.  INTRODUCTION 
This paper concerns itself with the human shoulder 

impedance measurement by using the combined dynamics of 
human shoulder and a robot in Fig. 1. More specifically, it 
proposes a practical methodology to apply the stochastic 
estimation with internal model based impedance control 
(IMBIC) to the estimation of human shoulder impedance. 
Described below are the background and context of the 
research reported in this paper.  

The physical quantity corresponding to clinical assessment 
of muscle tone-a muscle’s resistance to passive elongation or 
stretch-is mechanical impedance, which characterizes the 
dynamic relation between motion and force, and may be 
considered a dynamic generalization of stiffness (i.e., the static 
relation between displacement and force) [1]-[2]. Reasons for 
measuring human arm impedance range from understanding 
basic physiological properties of muscle [3] to testing different 
hypotheses concerning the maintenance of posture or the 
control of movement [1], [4]. Behavioral studies have also 
investigated how human arm impedance properties vary with 
motor learning [5]. Recently, for the quantitative diagnosis of 
stroke patients, human arm impedance was measured [2]. 

For this reason, many research works for the accurate and 
reliable estimation of human arm impedance have done. Initial 
studies on measurement of human arm stiffness [3] were 
extended to the estimation of arm impedance, which includes 
dynamic parameters such as inertia and viscous damping as 
well as stiffness, in later studies [6]-[7]. Recently, stochastic 

estimation methods [2], [8]-[9] have attracted much attention 
owing to a number of significant advantages over previous 
methods. 

In most previous studies [2] [6]-[7] [10], however, human 
arm impedance has been estimated only in the horizontal plane, 
typically with the weight of the arm supported against gravity, 
with the implicit assumption that both the elbow and shoulder 
act as hinge joints [8]. This is obviously a vast simplification 
for the shoulder, which is actually a complex of several 
different joints with multiple degrees of freedom (DOFs) [8]. It 
is thus expected that examination of human shoulder 
impedance under more general and realistic conditions will be 
a critical step towards understanding the shoulder behavior. 
Therefore, it is our concern how to estimate the impedance of 
shoulder more generally and realistically.  

Shoulder joint has three principal axes and three DOFs of 
motion and thus its movements can be described with a three 
DOF ball and socket joint [11]. Transverse axis is related to 
flexion/extension; antero-posterior axis to abduction/adduction; 
vertical axis to internal/external rotation; and long axis can be 
aligned with any of the above three axes [11]. Therefore, we 
are going to present a methodology to estimate three DOF 
human shoulder impedance with a spatial PUMA-type 
industrial robot. It includes necessary experimental setup and a 
gravity compensation scheme. IMBIC is used to apply 
stochastic perturbations to the subject; to gently bring the 
patient’s arm to a test location; and to enable an accurate and 
reliable stochastic estimation of human shoulder impedance by 
reducing the effect of nonlinear friction in robot joints. In 
addition, the analytical stochastic estimation method is used to 
improve the numerical conditioning of the estimate. The 
effectiveness of stochastic estimation with IMBIC was verified 
by our previous experiments [10], in which human arm 
impedance was estimated with a two DOF SCARA-type 
industrial robot. In this paper, we will extend the usage of the 
stochastic estimation with IMBIC to the estimation of human 
shoulder impedance with a three DOF PUMA-type industrial 
robot. In order to validate the proposed methodology for the 
estimation of human shoulder impedance, we will perform the 
estimation on a spring array similar to the one in [2], [10], the 
stiffness of which is already known. 

This paper is organized as follows. In section 2, we propose 
a practical methodology for the estimation of human shoulder 
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Figure 1.  Schematic diagram of robotic estimation of human shoulder 
impedance. Center of human shoulder joint is set to be the origin of the X, Y, 
and Z coordinates. Human hand is fixed at and attached to the robot endpoint. 

impedance. Section 3 provides the experiments on the spring 
array. Finally, in section 4, we summarize the results and draw 
conclusions. 

II. ESTIMATION OF HUMAN SHOULDER IMPEDANCE 

A. Estimation Method 
As for the estimation method in the present work, analytical 

compensation [2], [12]-[13] was used. It is one of the most 
recent methods and showed good performance in simulations 
[12] and experiments [2], [10], [13]. During test period for the 
estimation of human shoulder impedance, the relation among 
the commanded torque perturbations, Δτ , the interaction 
torques, τ , and the angular displacement, θ , is depicted using 
vector and matrix notation as Figs. 2 and 3, similarly to the 
estimation of human arm impedance [2], [12]. 

As reported in [2], it is not easy to estimate C directly from 
τ  to θ  due to high coherence between the elements of τ . The 
analytical compensation method resolves this difficulty by 
analytical compensation for the combined dynamics of human 
shoulder and robot by using R̂  and T̂  (the estimates of R  
and T , respectively) [2], [12]. Consequently, Ĉ , the estimate 
of C , can be obtained as follows [2]: 

 ˆ ˆ ˆ −= 1C RT , (1) 

and then Ẑ , the estimate of the impedance transfer function 
matrix (TFM), Z , can be obtained as follows [12]: 

 1ˆˆ ˆ ˆ ˆ ˆ( )− − − −= = =1 1 1Z C RT TR . (2) 

 

Figure 2.  Block daigram of linear MIMO structures using vector and matrix 
notation: ( )sT  is the transfer function matrix from the commanded torque 
perturbations, Δτ , to the interaction torques, τ ; ( )sC  from the interaction 
torques to the angular displacement, θ . 

 

Figure 3.  Block diagram of linear MIMO structures using vector and matrix 
notation: ( )sR  is the transfer function matrix from the commanded torque 
perturbations, Δτ , to the angular displacement, θ . 

For the estimation of human shoulder impedance, a subject 
is seated in front of the robot as shown in Fig. 1. To prevent the 
estimation results from being affected by the trunk motion, the 
trunk of the subject is restrained by a seat belt to the chair back. 
A carbon fiber arm trough is utilized both to prevent wrist and 
elbow motion and to fix the hand to the handle attached to the 
robot’s end-effector, alleviating the voluntary grasping action 
that influences the impedance measurements. To avoid 
voluntary reaction of the subject, the subject is asked to relax 
his arm. In the estimation of three DOF human shoulder 
impedance, three-way torque perturbations (in direction of 
flexion/extension, abduction/adduction, and internal/external 
rotation) should be implemented. For the torque perturbations 
in direction of abduction/adduction and flexion/extension, force 
perturbations in X- and Z-axis direction are applied to the 
subject’s hand and then torque perturbations to the subject’s 
shoulder are computed by using the well-known relationship 

 T
hΔ Δ=τ J F , (3) 

where Δτ  denotes the torque perturbation vector at the 
subject’s shoulder; ΔF  the vector of force perturbations; hJ  the 
Jacobian matrix of human arm. The interaction torques in these 
directions are also computed by using the same relationship 
with the interaction forces, F , and the angular displacements 
are calculated by the kinematic relationship between the 
shoulder rotation and hand’s position. As for the direction of 
internal/external rotation, the torque perturbation, interaction 
torque, and angular displacement at the subject’s hand are 
assumed to be identical to those at the subject’s shoulder. 

B. Gravity Compensation 
The gravity force affects the estimation results unless it is 

properly compensated. In previous studies for the estimation of 
human arm impedance, lower arm was supported in the 
horizontal plane by a sling attached to the ceiling to prevent the 
estimation results from being affected by the gravity force [3], 
[7]. This method, however, is not appropriate to spatial 
shoulder impedance measurement with spatial robots. In this 
paper, thus, we propose a gravity compensation method by 
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Figure 4.  Schematic diagram of F/T sensor and sensed forces. X and Z 
coordinates are the reference frame; x and z coordinates are the sensor frame. 

subtraction gravity force from the sensed values at the 
force/torque (F/T) sensor. 

At the beginning of the test, the sensed value from F/T 
sensor involves the intrinsic bias error of F/T sensor and 
gravity force. Note that, for the simplicity, further description is 
focused on the direction of Z-axis (see Fig. 4). 

 _ _sensed z i G IBEF F F= − − , (4) 

where _ _sensed z iF  denotes the initial sensed value from F/T 
sensor; GF  gravity force; IBEF  the intrinsic bias error. The 
gravity force is constant on the reference frame (X and Z in Fig. 
4), while the intrinsic bias error of F/T sensor is constant on the 
sensor frame (x and z in Fig. 4). For this reason, the gravity 
force and the intrinsic bias error should be compensated 
separately. 

Step 1. In order to compensate the intrinsic bias error, the 
robot is posed as shown in Fig. 5(a) prior to the test, and the x- 
and z-axis sensed values from F/T snesor are stored. Note that 
the stored values are free from the gravity force. Ten trials are 
run in succession and the mean value of ten trials is stored as 
the intrinsic bias error. The intrinsic bias error varies with 
experimental environment, but it was assumed that the 
experimental environment is not rapidly changed during the 
test period and this assumption was justified through ten trials. 
Hereafter, this stored value will be subtracted from every 
sensed value at F/T sensor during the test. 

Step 2. The pose of the robot is changed into test position as 
shown in Fig. 5(b). Now, F/T sensor values at the beginning of 
the test include only the gravity force: 

 _ _sensed z i GF F= − . (5) 

This value is transformed relative to the reference frame and 
stored. In the experimental setup as shown in Fig. 5(b), the 
transformed value is identical to _ _sensed z iF  in (5) since θ  is 
zero at the beginning of the test: 

 _Z i GF F= − . (6) 

During the test period, the sensed values after being 
compensated for the intrinsic bias error are expressed as 
follows: 

 

Figure 5.  (a) Initial pose of the robot for compensation for the intrinsic bias 
error of F/T sensor. (b) Robot’s pose during the test. 

 _ _

_ _

( )sin ,

( ) cos ,
sensor x G s

sensor z G s

F F F

F F F

θ

θ
Δ

Δ

= − −

= − −
 (7) 

where _sF Δ  denotes the force resulted from subject’s 
impedance, which should be measured for impedance 
measurement. The transformed values of them relative to the 
reference frame include both the gravity force and the resultant 
force from subject’s impedance: 

 _Z G sF F F Δ= − − . (8) 

The resultant force from subject’s impedance is finally 
acquired by a simple subtraction of (6) from (8): 

 _Z sF F Δ= − . (9) 

In summary, in order to prevent the estimation results from 
being affected by the intrinsic bias error and the gravity force, 
the former is compensated in the sensor frame and the latter on 
the reference frame. 

III. VALIDATAION VIA MECHANICAL SPRING ARRAY 

A. Experimental Setup 
1) Robot 

The robot used in the experiment is a three DOF PUMA-
type industrial robot, Samsung Faraman-AT2, as shown in Fig. 
5(a) and 5(b). It was used to implement force perturbation X- 
and Z-axis direction and torque perturbation around Y-axis. 
The effect of the resultant displacement in Y-axis direction and 
axis tilt on the estimation was assumed to be negligible since 
they are much smaller in comparison with the resultant 
translations in other directions and rotation around Y-axis, 
respectively. The kinematic information is shown in Fig. 6 and 
Table I which is expressed by using Denavit-Hartenberg (D-H) 
parameters in Craig’s notation [14]. AC servo motors with the 
maximum continuous torques of 0.637, 0.319, and 0.319 Nm 
are used to transmit power through harmonic drives with gear 
reduction ratios of 120:1, 120:1, and 100:1 for joints 1, 2, and 3, 
respectively. AC servo drives use torque-controlled mode, and 
their voltage to torque ratios are calculated by the 
manufacturer’s manual as follows: (25.45, 12.71, 10.62) Nm/V. 
Each joint has an encoder attached at its shaft for sensing the 
angular displacement with a resolution of 2048 pulses/rev and 
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Figure 6.  The kinematic information of three DOF PUMA-type industrial 
robot used in the experiments. 

TABLE I.  D-H PARAMETERS OF THE ROBOT IN CRAIG’S NOTATION 

i αi-1 ai-1 di θi 
1 0 0 0 θ1 
2 -90° a1 0 θ2 
3 90°+ θ3 a2 d3 0 

(Units: meter, degree) 

 

thus the resolution of each robot joint is 43.66 10−×  deg. 
(quadrature encoder). The angular velocity and acceleration 
were computed by numerical differentiation of the angular 
displacement. For real-time control of robot, the position and 
velocity of the robot end-effector in the Cartesian coordinates 
were determined by forward kinematics and the acceleration 
was computed by numerical differentiation of the velocity.  An 
ATI Gamma SI-130-10 F/T sensor, having ±130 N range and 

1/160 N resolution of sensing force and ±10 Nm range and 
1/3200 Nm resolution of sensing torque, is attached at the end-
effector to measure the interaction forces and torque between 
the robot and subject. The implementation of the controller was 
made in Linux-RTAI, a real-time operating system 
environment, with a sampling frequency of 1 kHz. 

2) Mechanical spring array 

Similar to that of [2], [10], [13], the mechanical spring 
array largely consists of 4 parts: an inner fixture, an outer 
fixture, a handle, and springs (Figs. 7 and 8). The inner fixture 
was bolted to the end of the handle, which was bolted to the 
F/T sensor on the robot end-effector. The outer fixture was 
bolted to a pedestal fixed to a shelf. 

Eight bolts locate along the perimeter of both the square 
outer and inner fixture (four bolts at their corners, four bolts at 
the midpoints of their sides), and thus eight springs could be 
mounted between bolts on the inner and outer fixtures to 
generate a variety of stiffness field. In this study, five springs 

were employed to generate stiffness fields corresponding to 
two test configurations (sa1 to sa2 in Table II). Note that the 
locations of the spring mounts (bolts) were specified to ensure 
that the springs would always be in tension during the 
experiment. 

In order to show the accuracy achieved with the proposed 
method, a linearized model of the mechanical spring array was 
developed and the expected value of impedance TFM of the 
mechanical spring array was computed based on this model. 
For the stiffness matrix K, the nonlinear restoring forces/torque 
generated by the spring array were derived and then linearized: 

 11 12 13

21 22 23

31 32 33

,sa

k k k
k k k
k k k

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

K
 (10) 

2 2
11 1 1 2 2

3 3 4 4
3 3 4 4

3 3 3 3 4 4 4 4
12 21

2
2 2

13 31

1 1

1 1 1 1 ,
2 2 2 2 2 2 2 2

,
2 2 2 2 2 2 2 2

1 1
( )

a b
a b a b

a b a b
a b a b

a a b b a a b b

a
a b

l lk k k k k
l l

l l l lk k k k
l l l l

k l k l k l k lk k
l l l l

lk k
l

k k L l

⎛ ⎞ ⎛ ⎞= + + − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= = − − + +

⎛ ⎞− − + −⎜ ⎟
⎝ ⎠= = −

2 3
3

3 4 4
3 4 4

1 1
22 1 1 2 2

3 3 4 4
3 3 4 4

1
2

,
1 1 1

2 2 2

1 1

1 1 1 1
2 2 2 2 2 2 2

b a
a

b a b
b a b

a b
a b a b

a b a b
a b a b

l lk
l l

l l lk k k
l l l

l lk k k k k
l l
l l l lk k k k

l l l

⎧ ⎫⎛ ⎞⎛ ⎞ − −⎜ ⎟⎪ ⎪⎜ ⎟⎝ ⎠⎪ ⎝ ⎠ ⎪
⎨ ⎬

⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪+ − + − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭
⎛ ⎞ ⎛ ⎞= − + − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ − + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

1 1 3
1 1 3

23 32
3 4 4

3 4 4

1 1 2
1 1 2 2

33

,
2

1 1 1
2

( ) ,
1 1 1

2 2 2

1 1 1 1

( )

a b a
a b a

b a b
b a b

a b a
a b a b

l
l l lk k k
l l l

k k L l
l l lk k k

l l l

l l lk k k k
l l l

k L l L

⎛ ⎞
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⎧ ⎫⎛ ⎞⎛ ⎞ ⎛ ⎞− − + − − −⎜ ⎟ ⎜ ⎟⎪ ⎪⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ ⎝ ⎠ ⎪= = − ⎨ ⎬
⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪+ − − − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎩ ⎭

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= −

2

3 3
3 3

4 4
4 4

2 1 2 1 ,
2 2

2 1 2 1
2 2

b

a b
a b

a b
a b

l
l

l lk k
l l

l lk k
l l

⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟

⎝ ⎠⎪ ⎪
⎪ ⎪⎛ ⎞ ⎛ ⎞⎪ ⎪+ − + −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎪ ⎪
⎪ ⎪⎛ ⎞ ⎛ ⎞+ − + −⎪ ⎪⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

 

where ki and li are the nominal stiffness and free length of each 
spring; l denotes the length from one mounting point on the 
outer fixture to one on the inner fixture, when they lie on 
horizontal or vertical line; and L denotes the length between 
any two adjacent mounting points on the outer fixture of the 
spring array. 

Note that complete pairing of springs (i.e., arrangement of 
springs to be ia ib ik k k= =  and ia ib il l l= =  where i=1, 2, 3, 
4) makes the off-diagonal elements of impedance TFM are 
numerically ill-conditioned since the inertia and stiffness 
matrices are isotropic, which causes the spectral estimate to be 
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Figure 7.  3 DOF PUMA-type robot and the mechanical spring array used in 
the experiments. The spring array consists of an inner fixture, an outer fixture, 
a handle and springs, the stiffness values of which are known in advance. 

inaccurate [2], [10]. For fair evaluation of the proposed 
methodology, the inner and outer fixtures were connected 
diagonally by springs with different nominal stiffness (i.e., 

3 3a bk k≠  or 4 4a bk k≠ ). This arrangement of springs results 
in the existence of initial restoring forces, which affect the 
estimation of the impedance TFM. The initial restoring forces 
are constant on the reference frame the same as the gravity 
force and measured with the gravity force from F/T sensor at 
the beginning of the test. The initial restoring forces, therefore, 
are compensated with the gravity force by Step 2 in Section 2.B. 

In order to reduce numerical errors resulted from handling 
sparse matrices, centimeter (cm), degree, centinewton (cN) and 
centinewton centimeter (cNcm) were used to calculate the 
stiffness matrix as the units of displacement, angular 
displacement, force, and torque, respectively. The calculated 
stiffness matrix, which corresponds to 1saK , were given by 

1

167.5576(cN/cm) 14.9006(cN/cm) 2.0424(cN/deg.)
14.9006(cN/cm) 167.5576(cN/cm) 2.0424(cN/deg.) .

117.0200(cNcm/cm) 117.0200(cNcm/cm) 95.7488(cNcm/deg.)
sa

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

K
 

This calculated stiffness matrix was confirmed to be within the 
±10% manufacturing tolerances of the mechanical spring 
constants by quasi-static calibration trials. The mass of the 
handle and inner fixture was measured on a precision scale to 
be 0.6028 kg, while the moment of inertia about Y-axis was 
mathematically calculated to be 3.4492 kg·cm2. The diagonal 
elements of viscous damping matrix were defined such that the 
damping coefficient ζ  was equal to 0.01, whereas the off-
diagonal elements were set to be zero as in [2], [10], [13]. 

 

Figure 8.  Schematic diagram of the mechanical spring array. Eight springs 
could be mounted between bolts on the inner and outer fixtures to generate a 
variety of stiffness field. 

TABLE II.  SPRING ARRAY TEST CONFIGURATIONS AND STIFFNESS 
VALUES USED DURING THE SPRING ARRAY IMPEDANCE EXPERIMENTS 

Configuration #
(N/m) 

K1a  K2a K3a K4a 

K1b K2b K3b K4b 

sa1 
38.0615 38.0615 0.0 0.0 
38.0615 38.0615 0.0 66.3707 

sa2 
38.0615 38.0615 0.0 66.3707 
38.0615 38.0615 0.0 0.0 

 

B. Desired Impedance and Gains of IMBIC 
IMBIC used in the experiments has the following form 

[15]-[16]: 

 
time delayed estimation (TDE)

( ) ( ) ( ) ( )u x u x rt t t L t L= + − − −F M u F M x , (11) 

where 

 1( ) ( ) ( ( ) ( ))rd rd r rd rt t t t−= − +u v M B x K x , (12) 

with 

 

1

1

( ) ( ( ) ( ))
[ ( ) ( ( ) ( ))]

( )
,

rd d rd sa

r rd rd r rd r

t t t
t L t L t L

t L

−
Δ

−

= − +

− − + − + −+
+ −
⎧ ⎫
⎨ ⎬
⎩ ⎭

v M K x F F
x M B x K xΓ
v

 (13) 

[ ] 3

u

T
X Z YF F τ ∈=F R  denotes the generalized input force 

vector at the robot end-effector; 3
x ∈M R  the matrix 

representing the known part of the robot inertia matrix, 
3

x ∈M R ; [ ]Tr X Z θ=x , rx , rx  the vectors of position, 
velocity, and acceleration; L  the small time delay; rdM , rdB , 

rdK  the desired mass, damping and stiffness matrices of the 

832



 
 

TABLE III.  SPECTRAL ANALYSIS PARAMETERS USED IN SPRING ARRAY 
IMPEDANCE ESTIMATION EXPERIMENT 

NFFT NWND NOVL fr  [Hz] 

24576 24576 18432 0.041 

NFFT number of data points included in the FFT calculation; NWND the length of the Hanning window 
function; NOVL the number of overlapping samples; fr minimum resolvable frequency. 

 

desired linear model, respectively; saF  the generalized force 
applied to the spring array by the robot; ΔF  stochastic 
perturbations; and Γ  denotes a diagonal forgetting factor 
matrix whose diagonal elements ii

γ (i=1, 2, 3) lie between zero 
and one: 0 1

ii
γ< < , by which the accumulation of quantization 

error due to the resolution limit is prevented. 

The 
x

M  is determined by the relation [15]-[16]: 

 1T
x φ

− −=M J M J , (14) 

where φM  represents the known part of the joint space robot 
inertia matrix and J  denotes the Jacobian matrix. 

The following gains are used for IMBIC: 

2(1.0 kg, 1.0 kg, 1.0 kg m ),

(40 N s/m, 60 N s/m, 20 Nm s/rad),

(100 N/m, 100 N/m, 100 Nm/rad),

(0.00713, 0.00614, 0.00835),

(0.9, 0.81, 0.9).

rd

rd

rd

diag

diag

diag

diag

diag
φ

= ⋅

= ⋅ ⋅ ⋅

=

=

=

M

B

K

M

Γ

 

Over damped and critically damped impedance dynamics 
were selected for displacement and rotation of the robot end 
point, respectively, while the value of φM  and Γ  were tuned 
according to the guideline in [17]. 

C. Force/Torque Perturbations 
Random force/torque perturbations having low input 

coherence (less than 0.6 in the frequency range of interest), 
were generated at a sampling rate of 1000 Hz by filtering a set 
of uniformly distributed random signals with an eighth-order 
Butterworth low pass filter having a cut-off frequency 15 Hz 
(selected to exceed human arm natural frequency, ~2-3 Hz). It 
is identical to the method of [2], [10]. Peak magnitudes of the 
resultant interaction force/torque were approximately 4.5 N and 
0.1 Nm, respectively. 

D. Estimation by analytical compensation method 
The impedance TFM of the spring array was estimated in 

accordance with the analytical compensation method described 
in Section 2.A. During test period, force/torque perturbations, 

saΔF  ( XFΔ , ZFΔ  and YτΔ ), were generated randomly and 
stored at the same time. As we were applying the stochastic 

perturbations, both the inner fixture position, sax  ( X , Z  and 

θ ), and the interaction force/torque, saF  ( XF , ZF  and Yτ ), 
between the robot and spring array were measured. The inner 
fixture position was measured being assumed that the inner 
fixture was perfectly fixed to the robot end-effector through the 
handle. The interaction force/torque, on the other hand, was 
measured by using the F/T sensor attached at end-effecotr. 
Note that in the estimation of mechanical spring array 
impedance, force and displacement in X- and Z-axis direction 
are not necessary to be transformed into torque and angular 
displacement, which is needed for the estimation of human 
shoulder impedance. 

From the saved saΔF , sax  and saF , we firstly estimated R̂  

(estimate of TFM from saΔF  to sax ) and T̂  (estimate of TFM 

from saΔF  to saF ) by using the frequency domain stochastic 
estimation method [2], [8], [10], [12], [18], and then the 
impedance TFM of the spring array was finally determined 
according to (2). 

Trials lasted for 50s (50,001 data points), allowing a 
number of sequential epochs of data to be averaged to reduce 
random error while allowing an acceptable spectral resolution. 
Welch’s periodogram method was used for the spectral 
analysis [2], [10], [12], [18]. The parameters in Table III were 
used, which yielded the best estimation, among many 
parameter sets tried. 

E. Evaluation method 
The reliability and accuracy of the mechanical spring array 

impedance estimation were evaluated by coherence functions 
[18]-[19] and two measures defined in [12]. 

In order to evaluate the reliability of the estimation method, 
both multiple and partial coherence functions [13], [18]-[19] 
have been used. Multiple coherence functions, on one hand, 
indicate how well a given output can be linearly predicted from 
all of the system inputs and over which frequencies a linear 
model can accurately characterize the system dynamics. 
Regions of low multiple coherence indicate insufficient input 
power, significant system nonlinearities, noise, or contributions 
from unmeasured inputs [2], [8], [12], [18]. A partial coherence 
function, on the other hand, measures the linear dependency 
between one input and a particular output, and is equivalent to 
ordinary coherence after the effect of the other input has been 
removed [2], [4], [8], [18]. 

As for the two measures mentioned above, ϕT and ϕij, have 
been used to evaluate the accuracy of the estimation method 
[12]. More specifically, ϕT and  ϕij deal with magnitude and 
phase errors between expected impedance TFM ( )sa sZ  and 

estimated impedance TFM ˆ ( )sa sZ  without dimensional 
inconsistency. ϕT is defined as the arithmetic mean value of 
ΔZsa(fk), the difference between ( )sa sZ  and ˆ ( )sa sZ  at 
frequency fk, 
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Figure 9.  Expected behavior (based on a linearized model) and estimated 
spring array impedance TFMs with IMBIC. Both magnitude and phase 
estimation well agree with the expected values throughout the frequency range 
of interest. 
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where fmax denotes the maximum frequency of interest; and 

2
G denotes the regular Euclidean norm of the complex matrix 

G and is equal to the maximum singular value of G [20]. In 
this study, fmax is set to be 10Hz, which is more than three times 
the natural frequency of human arm. Similarly, ϕij (i, j=1, 2, 3) 
was defined as the mean value of ΔZsa_ij(fk), the difference 
between the i, j-th element of saZ and ˆ

saZ  at frequency fk, 
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In accordance with their definition, ϕT represents the whole 
accuracy of  ˆ

saZ  , whereas ϕij stands for the individual 

accuracy of i, j-th element of ˆ
saZ . Zero value of ϕT and ϕij 

indicates that the estimated impedance TFM ˆ ( )sa sZ is identical 
to the expected value of mechanical spring array’s impedance 
TFM ( )sa sZ  [12]. 

F. Experimental Results 
For each of the two test configuration, sa1 to sa2, six trials 

were run in succession and then the respective mean of 
estimated mechanical spring array impedance TFMs of six 
trials was obtained. Of the two, the estimated impedance for 
sa1 is shown in Fig. 9 and the corresponding coherence 
functions are shown in Fig. 10. In Figs. 9 and 10, dashed line 
indicates the spectral estimates and coherence functions under 
the IMBIC, while, in Fig. 9, the expected behavior from the 
linear model is depicted by solid line. Fig. 11, on the other 
hand, displays the accuracy measures (ϕT and  ϕij) for all the 
two configurations. 

 

Figure 10.  Partial and multiple coherence functions that correspond to the 
estimates shown in Fig. 9. All coherence functions are close to unity 
throughout the frequency range of interest. 

 

Figure 11.  Summary of estimation accuracy of each element, ϕij, and that of 
the entire TFM, ϕT, for all two test configurations sa1 to sa2. 

Figs. 9 and 11 show excellent agreement between the 
estimated and expected impedance matrix, in terms of both the 
magnitudes and phases of all its elements. In Fig. 10, all the 
partial and multiple coherence functions have values 
significantly close to unity. Especially, it is noticeable that the 
multiple coherence function values exceed 0.95 throughout the 
frequency range of interest. 

G. Discussion 
High multiple coherence function values mean that the 

estimated impedance TFM accurately characterizes the 
mechanical spring array dynamics, and thus that the estimation 
results are reliable. 
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The estimated spring array impedance TFMs well agree 
with the expected values throughout the frequency range of 
interest except for the estimated phase of some of its off-
diagonal elements (f > 5 Hz). Above 5 Hz, some of the 
estimated impedance begin to deviate from second-order 
behavior. However, in this case the partial coherences also are 
low and fluctuating, showing the sensitivity of the stochastic 
estimation. The accuracy measures have values in the same 
order as in the estimation of human arm impedance simulation 
[12] and experiments [10]. The above indicates that the 
estimation results are accurate. 

IV. CONCLUSION 
The research in this article began with a question, “How to 

estimate the impedance of shoulder more generally and 
realistically?” We have proposed a practical methodology, 
which involves necessary experimental setup and gravity 
compensation scheme, for applying the stochastic estimation 
with IMBIC to the estimation of human shoulder impedance 
with a spatial robot. The estimation results were accurate and 
reliable, providing an affirmative answer. Having proposed a 
practical method and verified its effectiveness by experiments 
on a mechanical system, spatial human shoulder impedance 
estimation will be the next step and is currently underway. 
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